\qquad Date \qquad Period \qquad

1. Define Speed.
2. Define Velocity.
3. Write an example of Velocity.
4. Compare and contrast velocity and speed.
5. Identify whether the statements below are examples of speed or velocity. Explain Why.
a. The plane is traveling $600 \mathrm{~km} / \mathrm{h}$
b. The bus is traveling $20 \mathrm{~m} / \mathrm{s}$ south
c. The bicycle is moving $3 \mathrm{~m} / \mathrm{s}$ north
d. The jogger is running $1 \mathrm{~m} / \mathrm{s}$
6. The Velocity of an object can change if \qquad
7. Explain constant velocity. \qquad
8. Suppose a car is traveling at a speed of $40 \mathrm{~km} / \mathrm{h}$ north and then turns left at
\qquad
\qquad
\qquad
9. Identify whether or not acceleration occurred and why in the situations below:
a. You are riding your bike at $9 \mathrm{~km} / \mathrm{h}$. Ten minutes later, your speed is $6 \mathrm{~km} / \mathrm{h}$.
b. You ride your bike around the block at a constant speed of $11 \mathrm{~km} / \mathrm{h}$.
c. You ride your bike in a straight line at a constant speed of $10 \mathrm{~km} / \mathrm{h}$.
10. Describe the relationship between Velocity and Acceleration.
11.
12. Label the graph below with the following: Constant Acceleration, Constant Speed, Constant Deceleration. Additionally, label which points are positive acceleration, negative acceleration, and zero acceleration.

13. Write a short situation that the graph above could represent. For example, a bike, car,
